
 

Identifying and Reducing Gender Bias  
in Word-Level Language Models 

 

Problem Formulation 

 

 Most text corpora exhibit implicit gender bias. 
 

 The machine learning models that are trained using such text 
data exhibit similar and amplified bias in their predictions. 

 
 Towards this pursuit, we introduce a regularization term to 
reduce bias in word-level language models  trained on biased 
text. 
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Experiments and Observations 

  
 
 

 

 

 

 

 

 

 

 

 

 

Quantifying Bias and de-biasing the Language Model 

Bias Regularization 
 

 We propose a bias regularization term that penalizes the 
projection of embeddings learned by the model onto the gender 
subspace.  

 
 
 

 λ controls the importance of minimizing bias in the embedding 
matrix.  
 

Bias Measure 
 

 The conditional probability of a word given a specific  gendered 
word g is defined as below. 

 
 
 
 
 

 We define bias measure  as  

Future Work  

 

  Data Augmentation :  Men and women at 
work 

 
  Debiasing multi-faceted biases e.g. racial 
biases 

 
  Improving Bias Metric 

 
  Modifying conditional probabilitities:  Token 
level   smoothing 
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Conclusions 
 

 Perplexity bias trade-off 
 

  Effect of de-biasing encoder versus 
decoder   embeddings 

 
  Relative Bias Scores  of Datasets: 
       Daily Mail  < Wikitext-2 < Penn Treebank 
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